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Abstract

Exponential and Lindley distributions are quite effective in analyzing positively skewed

data. While the distributions exhibit some of the distinguishable characteristics, these are

also very close to each other for certain ranges of the parameter values. In this paper, we

intend to discriminate between the exponential and Lindley distribution functions consid-

ering the ratio of the maximized likelihood functions. The asymptotic distribution of the

logarithm of the maximized likelihood ratio has been obtained to determine the minimum

sample size required to discriminate between the two distributions for given probability of

correct selection and a distance measure. Some numerical results are obtained to validate

the asymptotic results. It is also observed that the asymptotic results work quite well even

for small sample size. One data analysis is performed to demonstrate the results.

Keywords and Phrases: Asymptotic distribution; Likelihood ratio test; Probability of correct

selection; Kolmogrov-Smirnov distance; Lindley distribution.

1 Introduction

The Lindley distribution with scale parameter θ, written as Lin(θ), having probability

density function (pdf)

fL(x; θ) =
θ2

1 + θ
(1 + x) e−θx; x, θ > 0, (1.1)

was introduced by Lindley [16]. The pdf is decreasing for θ ≥ 1 and is unimodal for θ < 1.

It is also known that the hazard function and the mean residual life (MRL) function of the

distribution are increasing for all θ. Several aspects of the distribution are studied in detail

by Ghitany et al. [9]. Lindley distribution being less popular among the univariate continuous

∗Corresponding author e-mail: shovanc@iimk.ac.in; meetshovan@gmail.com

1



0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

tw
o 

ov
er

la
pp

in
g 

di
st

rib
ut

io
ns

Figure 1: CDFs of exp(1.5) and Lin(2) distributions.

distributions has been overlooked in statistics literature. It is found that many of the mathe-

matical properties of the Lindley distribution are more flexible than those of the exponential

distribution.

Exponential distribution has been the most popular among the univariate continuous dis-

tributions with several significant statistical properties−most importantly, its characterization

through lack of memory property. The exponential distribution with scale parameter λ, written

as exp(λ), has pdf given by

fE(x;λ) = λe−λx; x, λ > 0.

While the pdf of the exponential is decreasing for all λ, the hazard and MRL functions are

constant. This exhibits one of the distinguishable characteristics of the distributions. On the

contrary, both the one parameter distributions can be quite effective in analyzing positively

skewed data. Moreover, it is possible that pdfs or the cumulative distribution functions (cdfs)

of both the distributions are very close to each other for certain ranges of the parameter values.

Figure 1.1 shows the closeness of the cdfs of exp(1.5) and Lin(2) distributions claiming that one

cdf can be used to fit the data while the data may come from the other pdf. This confirms that

even if the exponential and the Lindley can be very close in the sense of a certain distributional

characteristic, they may be quite different with respect to other characteristics. Although the

two models may provide similar fit for small or moderate sample sizes, it is still important to

choose the best fit for a given data set and to choose the correct model.

The problem of selecting the correct distribution is not new in the statistics literature. The

problem for discriminating between two non-nested models was first considered by Cox [5, 6]

and was later contributed by Bain and Engelhardt [2], Chen [4] and Fearn and Nebenzahl [8].

Due to the increasing applications of the lifetime distributions, special attention has been paid
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in selecting between the Weibull and log-normal distributions (Kundu and Manglick [12], Kim

and Yum [11]), the gamma and log-normal distributions (Kundu and Manglick [13]), the gener-

alized Rayleigh and log-normal distribution (Kundu and Raqab [14]), the generalized Rayleigh

and Webull distribution (Raqab [18], Ahmad et al. [1]), the log-normal and generalized expo-

nential distributions (Kundu et al. [15]), the Weibull and generalized exponential distributions

(Gupta and Kundu [10]), the log-normal, weibull, and generalized exponential distributions

(Dey and Kundu [7]), the exponential-Poisson and gamma distributions (Barreto-Souza, and

Silva [3]), and the Poisson and geometric distributions (Pradhan and Kundu [17]).

In this paper, we consider the selection procedure of exponential and Lindley distributions.

First, we use the logarithm of the ratio of maximized likelihoods (RML) to select the correct

distribution. Then, we use the asymptotic behaviours of the logarithm of the RML to compute

the probability of correct selection (PCS) to select the correct model. A comprehensive simu-

lation is conducted to study the behaviour of the asymptotic results for different sample sizes.

The rest of the paper is organized as follows. The asymptotic distributions of the logarithm of

the RML statistics of the two distribution functions are obtained in Section 2. In Section 3, we

determine the sample size required at a specified PCS which is used to discriminate between

the two distributions. Numerical computations for PCS values based on the asymptotic results

are presented in Section 4. One data analysis is presented for illustrative purpose in section 5.

2 Test statistic and asymptotic properties

In this section we describe the selection procedure on the basis of a random sample

X = {x1, x2, ...xn} . It is assumed that the data is generated from one of the exp(λ) and Lin(θ)

distributions and the corresponding likelihood functions are respectively

LE (x;λ) =

n∏
i=1

fE(x;λ), and LL (x; θ) =

n∏
i=1

fL(x; θ).

The RML is defined as L = LE(x;λ)
LL(x;θ)

; and λ̂ and θ̂ are the maximum likelihood estimators of λ

and θ respectively. Hence the logarithm of the RML, written as, T = logL = lE(λ̂) − lL(θ̂) is

obtained as

T = n

log

 λ̂
(
θ̂ + 1

)
θ̂2

+ (θ̂ − λ̂)
n∑
i=1

xi −
n∑
i=1

log(1 + xi). (2.1)

In case of exponential distribution, λ̂ can be easily obtained as

n∑n
i=1 xi

.

Similarly, θ̂, the estimator of Lindley distribution can be obtained as

θ̂ =
−(x̄− 1) +

√
(x̄− 1)2 + 8x̄

2x̄
.
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The natural model selection criterion will be to choose exponential distribution, if T > 0,

otherwise, choose Lindley distribution.

Next, we derive the asymptotic distribution of T for two distinct cases, namely when the

data are coming from exp(λ) and Lin(θ) respectively. For the Borel measurable function h(X),

EE(h(X)) and VE(h(X)) will denote the mean and variance of h(X) under the assumptions that

X follows exponential distribution. Similarly, we define EL(h(X)) and VL(h(X)) as mean and

variance of h(X) under the assumption that X follows Lindley distribution. Moreover, if g(X)

and h(X) are two Borel measurable functions, we define CovE(g(U), h(U)) = EE(g(U)h(U))−
EE(g(U))EE(h(U)), and CovL(g(U), h(U)) = EL(g(U)h(U))−EL(g(U))EL(h(U)). Almost sure

convergence will be denoted by a.s. throughout the paper. We define the following notations

for few integrals in the next subsections.

E1(−λ) =

∫ ∞
1

e−λt

t
dt,

Λ(i, j, k, l) =

∫ ∞
0

(log(1 + x))i (1 + x)je−(kλ+lθ)xdx.

2.1 Exponential distribution as the null hypothesis

We begin this section with the following Lemma. The proof of the Lemma follows using similar

arguments of White [19] and hence is omitted.

Lemma 2.1 Suppose the data are from exp(λ) distribution. Then, as n→∞ we have that

(i) λ̂→ λ a.s.

(ii) θ̂ → θ̃ a.s., where

EE

[
log fL(x; θ̃)

]
= max

θ
EE [log fL(x; θ)] ,

where θ̃ is the quasi-likelihood estimators of θ

(iii) If T ∗ = lE(λ̂) − lL(θ̃), then n−1/2(T − EET ) is asymptotically equivalent to n−1/2(T ∗ −
EET

∗).

The following theorem follows from central limit theorem and Lemma 2.1(iii) and hence is

omitted.

Theorem 2.1 If the data are from exp(λ) distribution, then T is approximately normally dis-

tributed with mean EE(T ) and variance VE(T ).

Now, we discuss how to obtain θ̃, EE(T ) and VE(T ). Let us define

ΨE(θ) = EE [log fL(x; θ)]

= 2 log θ − log(1 + θ)− eλE1(−λ)− θ

λ
.
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Differentiating ΨE(θ) with respect to θ (> 0), we get θ̃ after solving the following quadratic

equation

θ2 + (1− λ)θ − 2λ = 0.

We observe that lim
n→∞

EE(T )
n and lim

n→∞
VE(T )
n exist. Next we obtain the asymptotic mean and

variance of T under exp(λ) distribution which are denoted by AME ≈ EE(T )
n and AVE ≈ VE(T )

n

respectively and are derived as follows.

AME = EE

[
log fE(x;λ)− log fL(x; θ̃)

]
= log λ− 2 log θ̃ + log(1 + θ̃)− θ̃

λ
+ eλEi(−λ)− 1,

and

AVE = VE

[
log fE(x;λ)− log fL(x; θ̃)

]
=

(
θ̃ − λ

)2
VE(X) + VE (log(1 +X))− 2(θ̃ − λ)CovE (X, log(1 +X))

=

(
θ̃

λ
− 1

)2

+ λΛ(2, 0, 1, 0) +
(
eλE1(−λ)

)2
− 2(θ̃ − λ)

(
λΛ(1, 1, 1, 0) + (1 +

1

λ
)eλE1(−λ)

)
.

2.2 Lindley distribution as the null hypothesis

Along the same line as Lemma 2.1 and Theorem 2.1, we state the following results.

Lemma 2.2 Suppose the data are from Lin(θ) distribution. Then, as n→∞ we have that

(i) θ̂ → θ a.s.

(ii) λ̂→ λ̃ a.s. where

EL

[
log fE(x; λ̃)

]
= max

λ
EL [log fE(x;λ)] ,

where λ̃ is the quasi-likelihood estimators of λ

(iii) If T∗ = lE(λ̃) − lL(θ̂), then n−1/2(T − ELT ) is asymptotically equivalent to n−1/2(T∗ −
ELT∗).

As mentioned earlier the following theorem follows from central limit theorem and Lemma 2.2(iii)

and hence is omitted.

Theorem 2.2 If the data are from Lin(θ) distribution, then T is approximately normally dis-

tributed with mean EL(T ) and variance VL(T ).

To obtain λ̃, EL(T ) and VL(T ). Let us define

ΨL(λ) = EL [log fE(x;λ)]

= log λ− λ(θ + 2)

θ(θ + 1)
.
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λ AME(λ) AMV (λ) θ̃

0.1 0.0773 0.1952 0.184

0.5 0.0175 0.0401 0.781

0.9 0.0073 0.0162 1.292

1.3 0.0038 0.0083 1.769

1.5 0.0028 0.0062 2.000

2.0 0.0016 0.0033 2.561

2.5 0.0009 0.0020 3.108

Table 1: Different values of AME(λ), AVE(λ), θ̃ for different values of λ

Differentiating ΨL(λ) with respect to λ, we get

λ̃ =
θ(θ + 1)

θ + 2
.

As before we obtain the expressions of asymptotic mean and variance of T under Lin(θ)

distribution as AML ≈ EL(T )
n and are derived as

AML = EE

[
log fE(x; λ̃)− log fL(x; θ)

]
= log λ̃− (λ̃− θ) θ + 2

θ(θ + 1)
+ log

(
1

θ
+

1

θ2

)
− θ2

θ + 1
Λ(1, 1, 0, 1),

and

AVL = VL

[
log fE(x; λ̃)− log fL(x; θ)

]
=
(
θ − λ̃

)2
VL(X) + VL (log(1 +X))− 2(θ − λ̃)CovL (X, log(1 +X))

=
(
θ − λ̃

)2 θ2 + 4θ + 2

θ2(θ + 1)2
+

θ2

θ + 1
Λ(2, 1, 0, 1)−

(
θ2

θ + 1
Λ(1, 1, 0, 1)

)2

−

2(θ − λ̃)

((
θ2

θ + 1
(Λ(1, 2, 0, 1)− Λ(1, 1, 0, 1))

)
− θ(θ + 2)

(θ + 1)2
Λ(1, 1, 0, 1)

)
.

3 Selection procedure

In this section, we will make a choice between exponential and Lindley distributions for

which we determine minimum sample size for a given probability of correct selection (PCS)

and tolerance limits which can be measured through the distance between two cumulative

distribution functions (cdf). Practically, the tolerance limit measures the closeness between

two cdfs. It is obvious that if the distance between two cdfs is very small, one needs a very

large sample size to discriminate between them for a given PCS. On the other hand if the cdfs
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θ AML(θ) AML(θ) λ̃

0.1 -0.0802 0.1203 0.052

0.5 -0.0275 0.0479 0.300

0.9 -0.0124 0.0223 0.589

1.3 -0.0066 0.0121 0.906

1.5 -0.0049 0.0092 1.071

2.0 -0.0026 0.0049 1.500

2.5 -0.0016 0.0029 1.944

Table 2: Different values of AML(θ), AVL(θ), λ̃ for different θ

are far apart, moderate to small sample size may be sufficient to discriminate between the two

for a given PCS. Here we use Kolmogrov−Smirnov (K−S) distance to discriminate between the

two cdfs with K−S distance being defined as supx |F (x)−G(x)|, where F and G are the cdf of

exponential and Lindley distributions respectively. One may use other distance measures with

the same selection criterion. So, minimum sample size can be determined based on the given

PCS (p, say) and the tolerance limit (D, say) as described in the next subsection.

3.1 Determination of sample size

In view of Theorem 2.1, T is asymptotically normally distributed with mean EE(T ) and variance

VE(T ),. The PCS for selecting exponential distribution is given by

PCS(λ) = P (T > 0 | λ) ≈ Φ

(
EE(T )√
VE(T )

)
= Φ

(√
nAME(T )√
AVE(T )

)
,

where Φ denotes the cdf of the standard normal random variable. Sample size can be determined

by equating the PCS(λ) to the given protection level p as given by

Φ

(√
nAME(T )√
AVE(T )

)
= p

to get

n =
z2pAVE(T )

(AME(T ))2
.

For p = 0.6, 0.7, 0.8 sample size and K−S distance are reported in Table 3 for different values

of λ. Proceeding in the similar manner, using Theorem 2.2 sample size can be determined as

n =
z2pAVL(T )

(AML(T ))2
.

For p = 0.6, 0.7, 0.8 sample size and K−S distance are reported in Table 4 for different choices

of θ. Here zp is the 100p percentile point of a standard normal distribution.
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λ→ 0.1 0.5 0.9 1.3 1.5 2.0 2.5

n (p = 0.6) 2 8 20 37 49 88 144

n (p = 0.7) 9 36 84 159 208 375 617

n (p = 0.8) 23 93 216 408 536 967 1590

K-S 0.106 0.054 0.034 0.027 0.021 0.018 0.012

Table 3: Values of n and K−S distances between exp(λ) and Lin(θ̃) distributions.

σ → 0.1 0.5 0.9 1.3 1.5 2.0 2.5

n (p = 0.6) 2 4 9 18 24 45 77

n (p = 0.7) 23 17 40 77 103 194 332

n (p = 0.8) 53 45 103 199 265 499 855

K-S 0.120 0.070 0.049 0.036 0.031 0.022 0.015

Table 4: Values of n and K−S distances between Lin(θ) and exp(λ̃).

We shall now discuss how to use the PCS and the tolerance level to discriminate between

exponential and Lindley models. Suppose the data are from exponential cdf. Further, suppose

that the tolerance level is based on the K−S distance and is fixed at 0.054, and the protection

level p = 0.8. Here tolerance level D = 0.054 means that the practitioner wants to discriminate

between exponential and Lindley cdfs only when their K−S distance is more than 0.054. Table 3

shows that one needs to take a sample of size 93 for p = 0.8 to discriminate the exponential and

Lindley distributions. When the data are from Lindley distribution, for D = 0.054, and p = 0.8,

Table 4 gives the minimum value of n = 45. Therefore, for the given tolerance level of 0.054,

one needs a sample of size max(93,45)=93 to meet the protection level p = 0.8 simultaneously

for both the cases.

4 Numerical results

In this section we will show that the asymptotic results derived in Section 3 work well

for finite sample sizes. We compute the PCS based on asymptotic results derived in Section

3. Sample of size n =20, 40, 60, 80, 100, and 200 are taken for the findings. First we consider

the case when the null distribution is exponential and the alternative is Lindley. The results

obtained by using the asymptotic theory are shown in Table 5 for various choices of the scale

parameter of exponential distribution viz. λ = 0.1, 0.5, 0.9, 1.3, 1.5, 2.0, 2.5.

Similarly, we obtain the results for the same choice of n and the scale parameter of Lindley

distribution θ when the null distribution is Lindley and the alternative is exponential. The

results are reported in Table 6. It is clear from Tables 5 and 6 that as the sample size increases
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α ↓ n→ 20 40 60 80 100 200

0.1 0.783 0.864 0.912 0.941 0.959 0.993

0.5 0.652 0.709 0.750 0.782 0.808 0.891

0.9 0.601 0.641 0.671 0.696 0.716 0.791

1.3 0.574 0.604 0.626 0.645 0.661 0.722

1.5 0.567 0.590 0.612 0.634 0.648 0.701

2.0 0.553 0.575 0.584 0.608 0.617 0.655

2.5 0.537 0.553 0.564 0.575 0.583 0.617

Table 5: PCS based on asymptotic results when the data are from exp(λ) distribution.

θ ↓ n→ 20 40 60 80 100 200

0.1 0.852 0.930 0.966 0.983 0.988 0.990

0.5 0.714 0.786 0.832 0.861 0.891 0.965

0.9 0.644 0.704 0.748 0.773 0.809 0.882

1.3 0.601 0.656 0.683 0.702 0.727 0.804

1.5 0.598 0.632 0.655 0.683 0.702 0.776

2.0 0.577 0.591 0.613 0.634 0.657 0.708

2.5 0.555 0.579 0.594 0.606 0.615 0.669

Table 6: PCS based on based on asymptotic results when the data are from Lin(θ) distribution.

the PCS also increases as expected. It is also observed that the PCS increases as the value of λ

and θ decreases. Moreover, asymptotic results work quite well when the sample size is as small

as 20 in both the cases for all possible parameter ranges.

5 Data Analysis

In this section, we use a real data set to select between exponential and Lindley distribu-

tions. The data set as furnished in Ghitany et al. [9] represents the waiting times (in minutes)

before service of 100 bank customers. The maximum likelihood estimates of λ and θ are com-

puted as λ̂ = 0.101 and θ̂ = 0.187.

When exponential and Lindley distributions are used to fit the data, maximized log-likelihhod

functions are given as lE(0.101) = −329 and lL(0.187) = −319 respectively resulting in

T = lE(0.101) − lL(0.187) = −329 + 319 = −19 < 0 which indicates to choose the Lindley

model. Now we compute the PCS based on asymptotic results. Assuming that the wait-

ing time data are from exponential cdf, the asymptotic mean and variance are obtained as

AME(0.101) = 0.0768 and AVE(0.101) = 0.1940 along with the PCS = 0.959 yielding an esti-

mated risk less than around four percent to choose the wrong model. Similarly, assuming that
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the data are from Lindley cdf, we compute AML(0.187) = −0.0611 and AVL(0.187) = 0.0976,

with the PCS = 0.975 to yield an estimated risk less than approximately two percent to choose

the wrong model. Therefore, the PCS is at least min(0.959,0.976)=0.959 in this case. The PCS

attains the maxima when the data is coming from Lindley distribution and hence we should

choose Lindley distribution to fit the waiting time data.
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